TRPC1 regulates calcium‐activated chloride channels in salivary gland cells
نویسندگان
چکیده
Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.
منابع مشابه
Distinct Contributions of Orai1 and TRPC1 to Agonist-Induced [Ca2+]i Signals Determine Specificity of Ca2+-Dependent Gene Expression
Regulation of critical cellular functions, including Ca(2+)-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca(2+) signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca(2+)](i) due to intracellular Ca(2+) release and Ca(2+) influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca(2+)](i) inc...
متن کاملMultiple transcripts of anoctamin genes expressed in the mouse submandibular salivary gland
PURPOSE Salivary fluid formation is primarily driven by Ca(2+)-activated, apical efflux of chloride into the lumen of the salivary acinus. The anoctamin1 protein is an anion channel with properties resembling the endogenous calcium-activated chloride channels. In order to better understand the role of anoctamin proteins in salivary exocrine secretion, the expression of the ten members of the an...
متن کاملLocal Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions
Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²...
متن کاملTRPC1-mediated Ca2+ entry is essential for the regulation of hypoxia and nutrient depletion-dependent autophagy
Autophagy is a cellular catabolic process needed for the degradation and recycling of protein aggregates and damaged organelles. Although Ca is suggested to have an important role in cell survival, the ion channel(s) involved in autophagy have not been identified. Here we demonstrate that increase in intracellular Ca via transient receptor potential canonical channel-1 (TRPC1) regulates autopha...
متن کاملChloride channels and salivary gland function.
Fluid and electrolyte transport is driven by transepithelial Cl- movement. The opening of Cl- channels in the apical membrane of salivary gland acinar cells initiates the fluid secretion process, whereas the activation of Cl- channels in both the apical and the basolateral membranes of ductal cells is thought to be necessary for NaCl re-absorption. Saliva formation can be evoked by sympathetic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 230 شماره
صفحات -
تاریخ انتشار 2015